1 True or False

1.1	On a fast cross-continental link (~100Gbps), propagation delay usually dominates end-to-end packet
	delay (Most messages are smaller than 100MB).

- 1.2 On the same cross-continental link (~100Gbps), when transferring a 100GB file, **propagation delay** still dominates end-to-end file delivery.
- 1.3 On-demand circuit-switching is adopted by the Internet.
- 1.4 The aggregate (i.e., sum) of peaks is usually much larger than peak of aggregates in terms of bandwidth usage.
- 1.5 Bursty traffic (i.e., when packet arrivals are not evenly spaced in time) always leads to queuing delays.

2 Packets in Flight

2 End-to-End Delay

In the diagram below, we have two different links, each with different physical properties (e.g. because they're made of different materials):

	Link 1	Link 2
Physical length of link	L_1 meters	L_2 meters
Speed of data propagation	S_1 meters/sec	S_2 meters/sec
Bandwidth of link	T_1 bits/sec	T_2 bits/sec

Assumptions:

- All nodes can send and receive bits at full rate.
- Processing delay is negligible. For example, a node has received a packet the instant it receives the last byte of the packet.
- A node can only start forwarding a packet after it has received all bytes of the packet.

$$\fbox{2.1}$$
 Suppose $T_1=10000,\, L_1=100000,\, {
m and}\,\, S_1=2.5 imes 10^8.$

How long would it take to send a 500-byte packet from Node A to Node B?

2.2 The RTT (Round Trip Time) is the time it takes to send a packet (from source to destination) and receive a response (from destination to source). Count from the time the source transmits the first byte, to the time the source receives the last byte of the response.

Node A sends a x-byte packet to Node C. Then, Node C sends an x-byte response back to Node A. What is the RTT for this exchange?

Note: We assume processing delay is negligible, so Node C starts transmitting the response immediately after it receives the last byte of the packet.

4 Packets in Flight

- 2.3 Node A sends two packets:
 - Packet P_1 of size D_1 bytes.
 - Packet P_2 of size D_2 bytes.

Node A starts sending packet P_1 at t=0. Node A immediately starts sending packet P_2 after it finishes transmitting all the bits of P_1 .

When will Node C receive the last bit of packet P_2 ?

2.4 Find the variable relations that need to be satisfied in order to have no queuing delays for part (c).

3 Statistical Multi-What?

Consider three flows (F_1, F_2, F_3) sending packets over a single link. The sending pattern of each flow is described by how many packets it sends within each one-second interval; the table below shows these numbers for the first ten intervals. A perfectly smooth (i.e., non-bursty) flow would send the same number of packets in each interval, but our three flows are very bursty, with highly varying numbers of packets in each interval:

Time (s)	1	2	3	4	5	6	7	8	9	10
F_1	1	8	3	15	2	1	1	34	3	4
F_2	6	2	5	5	7	40	21	3	34	5
F_3	45	34	15	5	7	9	21	5	3	34

- 3.1 What is the peak rate of F_1 ? F_2 ? F_3 ? What is the sum of the peak rates?
- 3.2 Now consider all packets to be in the same aggregate flow. What is the peak rate of this aggregate flow?
- 3.3 Which is higher the sum of the peaks, or the peak of the aggregate?